« get me outta code hell

blog - My blog website - https://florrie.ed1.club
about summary refs log tree commit diff
path: root/site/posts/17-fractions-and-simplification-explained.md
diff options
context:
space:
mode:
Diffstat (limited to 'site/posts/17-fractions-and-simplification-explained.md')
-rw-r--r--site/posts/17-fractions-and-simplification-explained.md415
1 files changed, 415 insertions, 0 deletions
diff --git a/site/posts/17-fractions-and-simplification-explained.md b/site/posts/17-fractions-and-simplification-explained.md
new file mode 100644
index 0000000..e59bd81
--- /dev/null
+++ b/site/posts/17-fractions-and-simplification-explained.md
@@ -0,0 +1,415 @@
+
+    title: "Fractions and simplification, explained"
+    permalink: '17-fractions-and-simplification-explained'
+    date: {m: 7, d: 1, y: 2017}
+    categories:
+    - 'text'
+
+---
+
+# Fractions and simplification, explained
+
+I've always found fractions to be a little bit magical; things like "doing the
+same multiplication to the numerator and denominator gets you a fraction of
+equal value" and the process of simplifying fractions have been useful, but it
+hasn't been very clear *how* they work. So in this I set out on the silly,
+little, but fun quest to do define the way fractions work using plain old
+math..
+
+---
+
+A *fraction* is sort of like a number made of two parts. For example, we might
+have a fraction made of the numbers 1 and 2, and we would write that as
+<code class='math' id='math-frac-1_2'>\frac{1}{2}</code>. We could have another
+fraction made of the numbers 7 and 9, and that would be written as
+<code class='math' id='math-frac-7_9'>\frac{7}{9}</code>.
+
+The *value* of a fraction is simply the fraction's top number (we call this its
+*numerator*) divided by its bottom number (the *denominator*):
+<code class='math' id='math-fracval-9_3'>\frac{9}{3} = 9 \div 3 = 3</code>,
+<code class='math' id='math-fracval-100_20'>\frac{100}{20} = 100 \div 20 = 5
+</code>,
+and so on. (To *evaluate* a fraction just means to replace that fraction with
+its value.)
+
+---
+
+You can do lots of cool things with fractions, but we're interested in
+*multiplying* them.
+
+Hopefully you already know how to multiply two normal numbers - for example,
+you should already know that
+<code class='math' id='math-mul-3x7'>3 \times 7 = 21</code>,
+<code class='math' id='math-mul-2x4'>2 \times 4 = 8</code>, and so on.
+
+Multiplying two fractions is actually pretty simple - we just need to multiply
+the two numerators and the two denominators together, and we get another
+fraction. For example, to multiply
+<code class='math' id='math-multiply-two-fractions-statement'>
+  \frac{1}{2} \times \frac{4}{3}
+</code>:
+
+<pre class='math' id='math-multiply-two-fractions-solution'>
+  \frac{1}{2} \times \frac{4}{3} = \frac{1 \times 4}{2 \times 3} = \frac{4}{6}
+</pre>
+
+We can also multiply other fractions:
+
+<pre class='math' id='math-multiply-two-fractions-2'>
+  \frac{7}{5} \times \frac{2}{100} = \frac{7 \times 2}{5 \times 100} = \frac{14}{500}
+</pre>
+
+<pre class='math' id='math-multiply-two-fractions-3'>
+  \frac{4}{6} \times \frac{1}{3} = \frac{4 \times 1}{6 \times 3} = \frac{4}{18}
+</pre>
+
+..and so on.
+
+(We've already said that fractions can be made out of two numbers. But we made
+the fraction
+<code class='math' id='math-frac-1x4-2x3'>\frac{1 \times 4}{2 \times 3}</code>
+above - how did that work? Well, it makes sense if you think of
+<code class='math' id='math-expr-2x3'>2 \times 3</code> and
+<code class='math' id='math-expr-1x4'>1 \times 4</code>
+as numbers. In fact you don't need to worry about what those values are (even
+though we know them to be 6 and 4); just that they can be used in place of
+numbers. If you would like to get very technical, we could say that a fraction
+is made of two *expressions*; and an expression is just a number, like 7, or a
+calculation, like <code class='math' id='math-expr-6x5'>6 \times 5</code> or
+<code class='math' id='math-expr-3+7'>3 + 7</code>.)
+
+---
+
+What if we want to multiply a fraction and a normal whole number?
+
+<pre class='math' id='math-frac-1-2-x4'>
+  \frac{1}{2} \times 4
+</pre>
+
+The trick is that you need to turn the whole number into a fraction, somehow.
+The fraction we are creating must have an *equal value* to our whole number,
+or else we cannot use it in place of that number.
+
+It is true that for any number, dividing that number by 1 does not change it:
+<code class='math' id='math-5div1-eq-5'>5 \div 1 = 5</code>,
+<code class='math' id='math-4div1-eq-4'>4 \div 1 = 4</code>, etc. Since we
+already know that the value of a fraction is gotten by dividing the numerator
+by the denominator, we can create a fraction from any division problem: simply
+use the first number (5, 4, etc.) as the numerator and the second number (1)
+as the denominator.
+<code class='math' id='math-5-eq-5div1'>5 = \frac{5}{1}</code>,
+<code class='math' id='math-4-eq-4div1'>4 = \frac{4}{1}</code>, and so on.
+
+Now we know that any number <code class='math' id='math-x4'>\times 4</code>
+is equal to that same number
+<code class='math' id='math-x-frac-4-1'>\times \frac{4}{1}</code>, so we may
+put our <code class='math' id='math-frac-4-1'>\frac{4}{1}</code> fraction
+into our calculation:
+
+<pre class='math' id='math-using-frac-4-1'>
+  \frac{1}{2} \times 4 = \frac{1}{2} \times \frac{4}{1}
+</pre>
+
+And we already know how to multiply two fractions:
+
+<pre class='math' id='math-multiplying-frac-4-1'>
+  \frac{1}{2} \times \frac{4}{1} = \frac{1 \times 4}{2 \times 1} = \frac{4}{2}
+</pre>
+
+---
+
+We're almost ready to try out something interesting, but first we need to
+understand one more concept - that any number multiplied by 1 is the original
+number: <code class='math' id='math-4x1-eq-4-again'>4 \times 1 = 4</code>,
+<code class='math' id='math-3x1-eq-3-again'>3 \times 1 = 3</code>,
+<code class='math' id='math-999x1-eq-999-again'>999 \times 1 = 999</code>.
+(We already know this from how multiplying whole numbers always works, of
+course.)
+
+We can apply the same concept to fractions using what we now know about
+multiplying a fraction by a whole number:
+
+<pre class='math' id='math-using-frac-1-1'>
+  \frac{4}{7} \times 1 = \frac{4}{7} \times \frac{1}{1} = \frac{4 \times 1}{7 \times 1} = \frac{4}{7}
+</pre>
+
+This makes sense because we know that
+<code class='math' id='math-1-eq-frac-1-1'>1 = \frac{1}{1}</code> (from our
+rule that for any number, we can make a fraction that is equal to that number
+by using it as the numerator of the fraction and 1 as the denominator).
+
+---
+
+We can proceed now to define another rule: that for any fraction where the
+numerator and denominator are the same, the fraction is equal to 1. For
+example, <code class='math' id='math-frac-5-5-eq-1'>\frac{5}{5} = 1</code>,
+<code class='math' id='math-frac-1-1-eq-1'>\frac{1}{1} = 1</code>,
+<code class='math' id='math-frac-105-105-eq-1'>\frac{105}{105} = 1</code>.
+
+This makes sense because we know that any number divided by itself equals 1
+(that is, that any number "fits into" itself exactly 1 time). Using our rule
+for the value of a fraction, we may write:
+<code class='math' id='math-5div5'>\frac{5}{5} = 5 \div 5 = 1</code>,
+<code class='math' id='math-1div1'>\frac{1}{1} = 1 \div 1 = 1</code>, and so
+on.
+
+This means that we know how to replace any 1 in our calculations with a
+fraction of equal value; let's try that with our "multiplication by 1 equals
+itself" rule using a fraction:
+
+<pre class='math' id='math-double-fraction-parts'>
+  \begin{align*}
+    \frac{3}{5} \times 1 &= \frac{3}{5} \\
+    \frac{3}{5} \times \frac{2}{2} &= \frac{3}{5} \\
+    \frac{3 \times 2}{5 \times 2} &= \frac{3}{5} \\
+    \frac{6}{10} &= \frac{3}{5}
+  \end{align*}
+</pre>
+
+Ah! How peculiar. This reveals that the fraction
+<code class='math' id='math-frac-6-10'>\frac{6}{10}</code> is actually equal
+to the fraction <code class='math' id='math-frac-3-5'>\frac{3}{5}</code>.
+
+In fact, we can multiply any fraction and 1, or an equal value, and get a new
+fraction that is equivalent to the first fraction:
+
+<pre class='math' id='math-frac-7-9-times-frac-3-3'>
+  \begin{align*}
+    \frac{7}{9} \times 1 &= \frac{7}{9} \\
+    \frac{7}{9} \times \frac{3}{3} &= \frac{7}{9} \\
+    \frac{7 \times 3}{9 \times 3} &= \frac{7}{9} \\
+    \frac{21}{27} &= \frac{7}{9}
+  \end{align*}
+</pre>
+
+<pre class='math' id='math-frac-4-3-times-frac-5-5'>
+  \begin{align*}
+    \frac{4}{3} \times 1 &= \frac{4}{3} \\
+    \frac{4}{3} \times \frac{5}{5} &= \frac{4}{3} \\
+    \frac{4 \times 5}{3 \times 5} &= \frac{4}{3} \\
+    \frac{20}{15} &= \frac{4}{3}
+  \end{align*}
+</pre>
+
+<pre class='math' id='math-frac-99-150-times-frac-1-1'>
+  \begin{align*}
+    \frac{99}{150} \times 1 &= \frac{99}{150} \\
+    \frac{99}{150} \times \frac{1}{1} &= \frac{99}{150} \\
+    \frac{99 \times 1}{150 \times 1} &= \frac{99}{150} \\
+    \frac{99}{150} &= \frac{99}{150}
+  \end{align*}
+</pre>
+
+<pre class='math' id='math-frac-2-4-times-frac-2-2'>
+  \begin{align*}
+    \frac{2}{4} \times 1 &= \frac{2}{4} \\
+    \frac{2}{4} \times \frac{2}{2} &= \frac{2}{4} \\
+    \frac{2 \times 2}{4 \times 2} &= \frac{2}{4} \\
+    \frac{4}{8} &= \frac{2}{4}
+  \end{align*}
+</pre>
+
+..And so on.
+
+Now - we have already said that for any fraction where the top and bottom are
+equal, that fraction is equal to 1. What if we put two equal fractions inside
+of our fraction?
+
+<pre class='math' id='math-nested-fraction'>
+  \frac{\frac{3}{9}}{\frac{3}{9}}
+</pre>
+
+This is still equal to 1, because the numerator and denominator of the
+"big" fraction are equal. (It *is* true that
+<code class='math' id='math-frac-3-9-eq-frac-3-9'>\frac{3}{9} = \frac{3}{9}</code>,
+of course!)
+
+Likewise, fractions such as
+<code class='math' id='math-frac-frac-1-2-frac-1-2'>\frac{\frac{1}{2}}{\frac{1}{2}}</code>
+and
+<code class='math' id='math-frac-frac-5-4-frac-5-4'>\frac{\frac{5}{4}}{\frac{5}{4}}</code>
+are also equal to 1.
+
+---
+
+Now we can use all we've learned so far to try this:
+
+<pre class='math' id='math-frac-8-4-times-halfer'>
+  \begin{align*}
+    \frac{8}{4} \times 1 &= \frac{8}{4} \\
+    \frac{8}{4} \times \frac{\frac{1}{2}}{\frac{1}{2}} &= \frac{8}{4}
+  \end{align*}
+</pre>
+
+But how do we multiply those two fractions? Well, we can multiply them exactly
+the way we would usually multiply fractions - multiply the two numerators
+together and the two denominators together:
+
+<pre class='math' id='math-mix-frac-8-4-times-halfer'>
+  \frac{8}{4} \times \frac{\frac{1}{2}}{\frac{1}{2}} =
+  \frac{8 \times \frac{1}{2}}{4 \times \frac{1}{2}}
+</pre>
+
+We already know how to multiply a whole number and a fraction together - just
+convert the whole number to a fraction by putting the whole number on top and 1
+on the bottom:
+
+<pre class='math' id='math-solve-frac-8-4-times-halfer'>
+  \frac{8 \times \frac{1}{2}}{4 \times \frac{1}{2}} =
+  \frac{\frac{8}{1} \times \frac{1}{2}}{\frac{4}{1} \times \frac{1}{2}} =
+  \frac{\frac{8 \times 1}{1 \times 2}}{\frac{4 \times 1}{1 \times 2}} =
+  \frac{\frac{8}{2}}{\frac{4}{2}}
+</pre>
+
+We are nearly completed; we may simply insert this fraction back into our
+calculation:
+
+<pre class='math' id='math-frac-substitute-halved-fraction'>
+  \begin{align*}
+    \frac{8}{4} \times \frac{\frac{1}{2}}{\frac{1}{2}} &= \frac{8}{4} \\
+    \frac{\frac{8}{2}}{\frac{4}{2}} &= \frac{8}{4}
+  \end{align*}
+</pre>
+
+In order to actually make this useful, we must evaluate the fractions that are
+in the top and bottom of our newly-created "big" fraction:
+
+<pre class='math' id='math-frac-solve-halved-fraction'>
+  \frac{\frac{8}{2}}{\frac{4}{2}} = \frac{8 \div 2}{4 \div 2} = \frac{4}{2}
+</pre>
+
+And then we may put this back into our main calculation:
+
+<pre class='math' id='math-simplify-conclusion'>
+  \begin{align*}
+    \frac{\frac{8}{2}}{\frac{4}{2}} &= \frac{8}{4} \\
+    \frac{4}{2} &= \frac{8}{4}
+  \end{align*}
+</pre>
+
+As you can see, we have gone from one fraction, in this case
+<code class='math' id='math-frac-8-4'>\frac{8}{4}</code>, to a fraction of
+equal value but smaller numerators and denominators,
+<code class='math' id='math-frac-4-2'>\frac{4}{2}</code>. This is what is
+known as *simplifying* a fraction.
+
+We can show these are of equal value simply by comparing their values:
+<code class='math' id='math-frac-8-4-eq-2'>\frac{8}{4} = 8 \div 4 = 2</code>,
+and
+<code class='math' id='math-frac-4-2-eq-2'>\frac{4}{2} = 4 \div 2 = 2</code>.
+We say that because the fractions have an equal value, they are *proportional*.
+
+---
+
+The *greatest common divisor* of two numbers is the greatest whole number you
+can divide both numbers by and get two resulting whole numbers. There are
+various methods of finding it; we write it with the notation
+<code class='math' id='math-gcd-a-b'>\DeclareMathOperator{\gcd}{gcd} \gcd(a, b)</code>
+(where <code class='math' id='math-variable-a'>a</code> and
+<code class='math' id='math-variable-b'>b</code> are whole number values). For
+example,
+<code class='math' id='math-gcd-20-15'>\DeclareMathOperator{\gcd}{gcd} \gcd(20, 15) = 5</code>
+because dividing <code class='math' id='math-20div5'>20 \div 5 = 4</code> and
+<code class='math' id='math-15div5'>15 \div 5 = 3</code> both get us whole
+numbers (4 and 3), and there is no greater number that both 20 and 15 can be
+divided by to get whole numbers.
+
+The greatest common factor can be used inside of fraction simplification to
+get the "completely" simplified value of any fraction. For example:
+
+<pre class='math' id='math-gcf-completely-simplified'>
+  \begin{equation}
+  \begin{split}
+  \frac{70}{42} &= \frac{70}{42} \times 1 \\
+   &= \frac{70}{42} \times \frac{\frac{1}{\gcd(70,42)}}{\frac{1}{\gcd(70,42)}} \\
+   &= \frac{70}{42} \times \frac{\frac{1}{14}}{\frac{1}{14}} \\
+   &= \frac{70 \times \frac{1}{14}}{42 \times \frac{1}{14}} \\
+   &= \frac{5}{3}
+  \end{split}
+  \end{equation}
+</pre>
+
+(I skipped a couple of steps in multiplying the values in the "big" fraction
+to keep a focus on the important part, which was applying the greatest common
+divisor.)
+
+Another example:
+
+<pre class='math' id='math-gcf-simplify-frac-8-4'>
+  \begin{equation}
+  \begin{split}
+  \frac{8}{4} &= \frac{8}{4} \times 1 \\
+   &= \frac{8}{4} \times \frac{\frac{1}{\gcd(8,4)}}{\frac{1}{\gcd(8,4)}} \\
+   &= \frac{8}{4} \times \frac{\frac{1}{4}}{\frac{1}{4}} \\
+   &= \frac{8 \times \frac{1}{4}}{4 \times \frac{1}{4}} \\
+   &= \frac{2}{1} \\
+   &= 2
+  \end{split}
+  \end{equation}
+</pre>
+
+This time we get the value of
+<code class='math' id='math-frac-2-1'>\frac{2}{1}</code>, which is 2, and use
+that as our simplified value.
+
+---
+
+All of the above can be written in elegant and general algebra-like math.
+
+**Value of a fraction:**
+
+<pre class='math' id='math-value-of-a-fraction'>
+  \frac{a}{b} = a \div b
+</pre>
+
+**Fractions from values using denominator 1:**
+
+<pre class='math' id='math-fractions-from-values-using-denominator-1'>
+  n = n \div 1 = \frac{n}{1}
+</pre>
+
+**Multiply two fractions:**
+
+<pre class='math' id='math-multiply-two-fractions'>
+  \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}
+</pre>
+
+**Multiply a fraction and a value:**
+
+<pre class='math' id='math-multiply-fraction-and-value'>
+  \frac{a}{b} \times n =
+  \frac{a}{b} \times \frac{n}{1} =
+  \frac{a \times n}{b \times 1} =
+  \frac{a \times n}{b}
+</pre>
+
+**Simplify a fraction (completely):**
+
+<pre class='math' id='math-completely-simplify-fraction'>
+  \begin{equation}
+  \begin{split}
+  \frac{a}{b} &= \frac{a}{b} \times 1 \\
+   &= \frac{a}{b} \times \frac{1 \div \gcd(a,b)}{1 \div \gcd(a,b)} \\
+   &= \frac{a \times 1 \div \gcd(a,b)}{b \times 1 \div \gcd(a,b)} \\
+   &= \frac{a \div \gcd(a,b)}{b \div \gcd(a,b)}
+  \end{split}
+  \end{equation}
+</pre>
+
+Alternate:
+
+<pre class='math' id='math-completel-simplify-fraction-alt'>
+  \begin{equation}
+  \begin{split}
+  \frac{a}{b} &= \frac{a}{b} \times 1 \\
+   &= \left( \frac{a}{b} \times \frac{\frac{1}{\gcd(a,b)}}{\frac{1}{\gcd(a,b)}} \right) \\
+   &= \left( \frac{a \times \frac{1}{\gcd(a,b)}}{b \times \frac{1}{\gcd(a,b)}} \right) \\
+   &= \left( \frac{\frac{a}{1} \times \frac{1}{\gcd(a,b)}}{\frac{b}{1} \times \frac{1}{\gcd(a,b)}} \right) \\
+   &= \left( \frac{\frac{a \times 1}{1 \times \gcd(a,b)}}{\frac{b \times 1}{1 \times \gcd(a,b)}} \right) \\
+   &= \left( \frac{\frac{a}{\gcd(a,b)}}{\frac{b}{\gcd(a,b)}} \right)
+  \end{split}
+  \end{equation}
+</pre>
+
+(The parentheses around each step are only present to clarify the separate
+steps; they don't actually mean anything.)